ORIGINAL

DOCUMENT DESCRIPTION DATE RECEIVED 10/4/11 88120000002 8EHQ-11- 18459 COMMENTS:

DOES NOT CONTAIN CBI

338584

2011 OCT -4 AM 10: 52

September 22, 2011

Document Processing Center (Mail Code 7407M) Room 6428 Attention: 8(e) Coordinator Office of Pollution Prevention and Toxics U.S. Environmental Protection Agency 1201 Constitution Ave., NW Washington, DC 20004

Re: TSCA 8(e) Submission

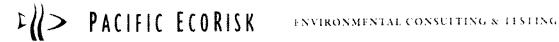
Dear Sir/Madam:

The following information is being submitted by Syrgis P Chem ("P Chem") pursuant to U.S. EPA's current policy guidance on information that EPA believes is reportable pursuant to Section 8(e) of the Toxic Substances Control Act. P Chem has made no determination as to whether a significant risk of injury to health or the environment is actually presented by this information.

This submission is based on the results of an aquatic toxicity study for a product that is a mixture consisting primarily of water, methanol and a substance identified as "formaldehyde, polymer with N-(2-aminoethyl)-1,2-ethanediamine, benzylated" (CAS # 70750-07-1). The results of the acute (96-hour) toxicity test with fathead minnows can be summarized as follows:

No observable effect concentration: 5 mg/L10 mg/LLowest observable effect concentration: 5.6 mg/L Acute (96-hour) LC₅₀ concentration:

Further evaluation of this product revealed that the mixture contains other residual substances, including approximately 800 ppm of "free" formaldehyde (i.e., formaldehyde not part of the polymer). P Chem's further evaluation of the mixture led to the conclusion that the results of the aquatic toxicity testing for the mixture are likely associated with the formaldehyde polymer, and not other components or residuals in the mixture.



If you have any questions regarding this submission, please do not hesitate to call me at 936-544-5174.

Sincerely,

Lois Waits

Senior VP of Operations/General Manager

Duane Treybig SYRGIS PChem 3985 US Hwy 287 N Latexo, TX 75849

May 17, 2011

Duane:

I have enclosed one copy of our report "An Evaluation of the Acute Toxicity of An Industrial Chemical Product ("XC-197")" for testing performed on the sample received at the Pacific EcoRisk laboratory on April 7, 2011. The results of this testing are described below.

Initial Range-Finding Test – Acute (96-hr) Toxicity Testing with Fathead Minnows Range-finding testing of this product was performed at product concentrations of 0.01, 0.1, 1, 10, 100, and 1000 mg/L. The results of the range-finding test follow:

There were **no** significant reductions in survival at the ≤ 1 mg/L test concentrations. There was complete mortality of the fish at the ≥ 10 mg/L test concentrations.

Definitive Test – Acute (96-hr) Toxicity Testing with Fathead Minnows

Based upon the range-finding test response, and upon consultation with you, follow-up 'definitive' testing was performed at XC-197 concentrations of 0.5, 1, 2.5, 5, 10, and 20 mg/L. The results of the definitive test follow:

The No Observable Effect Concentration (NOEC) was 5 mg/L XC-197 and the Lowest Observable Effect Concentration (LOEC) was 10 mg/L XC-197. The acute (96-hr) LC50 was 5.6 mg/L XC-197.

Please feel free to call me at (707) 207-7760 if you have any questions regarding the performance or interpretation of these tests.

Sincerely,

Scott Ogle Digitally signed by Scott Ogle On Cras-Scott Ogle, o-p-actific Econlisk, ou, email-scottogle@pacificecorisk.com, c=US Date: 2011.05 18 1403:01 -0800'

R. Scott Ogle, Ph.D. Principal & Special Projects Director

The test was performed under Lab Order 18260. The test results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report, and only relate to the sample tested. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk

An Evaluation of the Acute Toxicity of An Industrial Chemical Product ("XC-197")

Sample received on April 7, 2011

Prepared For:

SYRGIS PChem 3985 US Hwy 287 N Latexo, TX 75849

Prepared By:

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534

May 2011

An Evaluation of the Acute Toxicity of An Industrial Chemical Product ("XC-197")

Sample received on April 7, 2011

Table of Contents

		Page
1. INTRODU	JCTION	1
2. ACUTE T	OXICITY TEST PROCEDURES	1
2.1 Receip	et and Handling of the Industrial Chemical Sample	1
-	Toxicity Testing with Fathead Minnows – Initial Range-Finding Test	
2.3 Acute	Toxicity Testing with Fathead Minnows – Follow-Up Definitive Test	2
	s of Product "XC-197" on Fathead Minnows – Range-Finding Test	
	s of Product "XC-197" on Fathead Minnows – Definitive Test	
	Y AND CONCLUSIONS	
	C Summary	
	Appendices	
Appendix A	Test Data and Summary of Statistical Analyses for the Evaluation of the Toxicity of the Chemical Product "XC-197" on Fathead Minnows – Init Finding Test	
Appendix B	Test Data and Summary of Statistical Analyses for the Evaluation of the	e Acute

Toxicity of the Chemical Product "XC-197" on Fathead Minnows – Follow-Up

Definitive Test

1. INTRODUCTION

SYRGIS PChem has contracted Pacific EcoRisk (PER) to perform an acute toxicity evaluation of an industrial chemical product (designated "XC-197"). This evaluation consisted of the US EPA acute (96-hr) toxicity survival test with the fathead minnow (*Pimephales promelas*). Because the expected toxicity of this compound was unknown, this testing was performed in a phased approach consisting of an initial "range-finding" test with test concentrations that progressively increased by orders of magnitude, followed by a subsequent "definitive" test with test concentrations that progressively increased by a factor of two. This report describes the performance of these tests.

2. ACUTE TOXICITY TEST PROCEDURES

The methods used in conducting this toxicity testing followed the guidelines established by the EPA manual "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition" (EPA-821-R-02-012).

2.1 Receipt and Handling of the Industrial Chemical Sample

On April 7, a sample of an industrial chemical ("XC-197") in liquid form was received at the PER testing laboratory in Fairfield, CA. Upon receipt at the testing laboratory, the sample was logged-in, and was stored in the dark at 0-6°C except when being used to prepare test solutions.

2.2 Acute Toxicity Testing with Fathead Minnows – Initial Range-Finding Test

The fathead minnows used in this test were obtained from a commercial supplier (Aquatox). These fish were maintained at 20°C in aerated aquaria containing EPA synthetic moderately-hard water prior to their use in the tests. During this pre-test period, the fish were fed brine shrimp nauplii *ad libitum*.

The Lab Control water for this test consisted of EPA synthetic "moderately hard" water, prepared by addition of reagent-grade chemicals to Type 1 lab water (reverse-osmosis, deionized water). Test solutions were prepared by addition of the chemical to the Lab Control medium at a chemical concentration of 1000 mg/L; interim test media concentrations were prepared by appropriate dilutions of the 1000 mg/L solution using the Lab Control water. Water quality characteristics (pH, dissolved oxygen [D.O.], and conductivity) were determined for each treatment test solution prior to the start of the test.

There were 4 replicates at each test treatment, each replicate consisting of 400-mL of test solution in a 600-mL glass beaker. The test was initiated by randomly allocating 10 five-day old

fathead minnows into each replicate. The replicate beakers were then placed in a temperature-controlled room at 20°C under a 16L:8D photoperiod.

Each replicate container was examined daily, and the number of live fish in each was recorded. On Day 2 of the tests, fresh test solutions were prepared and characterized as before. The fish were also fed brine shrimp nauplii on Day 2 of the tests. Later that same day, approximately 80% of the old media in each replicate container was carefully poured out and replaced with the fresh test solution. "Old" water quality characteristics (pH, D.O., and conductivity) were measured for the old test solution that had been discarded from one randomly selected replicate at each treatment.

After 96 (±2) hrs, the test was terminated and the number of live fish in each replicate was determined. The resulting survival data were analyzed to evaluate any impairment due to the "XC-197" product; all statistical analyses were performed using the CETIS® statistical software (TidePool Scientific, McKinleyville, CA).

2.3 Acute Toxicity Testing with Fathead Minnows – Follow-Up Definitive Test

The fathead minnows used in this test were obtained from a commercial supplier (Aquatox). These fish were maintained at 20°C in aerated aquaria containing EPA synthetic moderately-hard water prior to their use in the tests. During this pre-test period, the fish were fed brine shrimp nauplii *ad libitum*.

The Lab Control water for this test consisted of EPA synthetic "moderately hard" water. Based upon the range-finding test response, and upon consultation with SYRGIS PChem staff, the follow-up 'definitive' test of XC-197 was performed at concentrations of 0.5, 1, 2.5, 5, 10, and 20 mg/L. Test solutions were prepared by addition of the chemical to the Lab Control medium at a chemical concentration of 20 mg/L; interim test media concentrations were prepared by appropriate dilutions of the 20 mg/L solution using the Lab Control water. Water quality characteristics (pH, dissolved oxygen [D.O.], and conductivity) were determined for each treatment test solution prior to the start of the tests.

There were 4 replicates at each test treatment, each replicate consisting of 400-mL of test solution in a 600-mL glass beaker. The test was initiated by randomly allocating 10 five-day old fathead minnows into each replicate. The replicate beakers were then placed in a temperature-controlled room at 20°C under a 16L:8D photoperiod.

Each replicate container was examined daily, and the number of live fish in each was recorded. On Day 2 of the tests, fresh test solutions were prepared and characterized as before. The fish were also fed brine shrimp nauplii on Day 2 of the test. Later that same day, approximately 80% of the old media in each replicate container was carefully poured out and replaced with the fresh

test solution. "Old" water quality characteristics (pH, D.O., and conductivity) were measured for the old test solution that had been discarded from one randomly selected replicate at each treatment.

After 96 (±2) hrs, the test was terminated and the number of live fish in each replicate was determined. The resulting survival data were analyzed to evaluate any impairment due to the chemical product; all statistical analyses were performed using the CETIS® statistical software.

3. RESULTS

3.1 Effects of Product "XC-197" on Fathead Minnows – Range-Finding Test

The results of this test are summarized in Table 1. There was 100% survival at the Lab Control treatment. There were \underline{no} significant reductions in survival at the ≤ 1 mg/L test concentrations. There was complete mortality of the fish at the ≥ 10 mg/L test concentrations.

The test data and summary of statistical analyses for this test are presented in Appendix A.

Table 1. Effects of the chemical product "XC-197" on fathead minnows – Range-finding test.								
Test Treatment (mg/L)	Mean % Survival							
Lab Control	100							
0.01	100							
0.1	97.5							
1	97.5							
10	0*							
100	0*							
1000	0*							
Summary of Key Stati	stics							
No Observable Effect Concentration (NOEC) =	1 mg/L XC-197							
Lowest Observable Effect Concentration (LOEC) =	10 mg/L XC-197							

^{*} The response at this test treatment was significantly less than the Lab Control treatment response at p < 0.05.

3.2 Effects of Product "XC-197" on Fathead Minnows - Definitive Test

The results of this test are summarized in Table 2. There was 97.5% survival at the Lab Control treatment. There were \underline{no} significant reductions in survival at the ≤ 5 mg/L product concentrations; the No Observable Effect Concentration (NOEC) was 5 mg/L XC-197. There was complete mortality at the 10 mg/L and 20 mg/L concentrations; the Lowest Observable Effect Concentration (LOEC) was 10 mg/L XC-197. The acute (96-hr) LC50 was 5.6 mg/L XC-197.

The test data and summary of statistical analyses for this test are presented in Appendix B.

Table 2. Effects of the chemical product "XC-197" or	n fathead minnows – Definitive test.
Test Treatment (mg/L)	Mean % Survival
Lab Control	97.5
0.5	100
1	100
2.5	97.5
5	87.5
10	0*
20	0*
Summary of Key Stat	listics
No Observable Effect Concentration (NOEC) =	5 mg/L XC-197
Lowest Observable Effect Concentration (LOEC) =	10 mg/L XC-197
LC50 =	5.6 mg/L XC-197

^{*} The response at this test treatment was significantly less than the Lab Control treatment response at p < 0.05.

4. SUMMARY AND CONCLUSIONS

Evaluation of the acute toxicity of the industrial chemical products "XC-197" was performed for the product sample received at the Pacific EcoRisk laboratory on April 7, 2011. The results of this testing are described below.

Initial Range-Finding Test – Acute (96-hr) Toxicity Testing with Fathead Minnows Range-finding testing of this product was performed at product concentrations of 0.01, 0.1, 1, 10, 100, and 1000 mg/L. The results of the range-finding test follow:

There were <u>no</u> significant reductions in survival at the ≤ 1 mg/L test concentrations. There was complete mortality of the fish at the ≥ 10 mg/L test concentrations.

Definitive Test – Acute (96-hr) Toxicity Testing with Fathead Minnows

Based upon the range-finding test response, and upon consultation with you, follow-up 'definitive' testing was performed at XC-197 concentrations of 0.5, 1, 2.5, 5, 10, and 20 mg/L. The results of the definitive test follow:

The No Observable Effect Concentration (NOEC) was 5 mg/L XC-197 and the Lowest Observable Effect Concentration (LOEC) was 10 mg/L XC-197. The acute (96-hr) LC50 was 5.6 mg/L XC-197.

4.1 QA/QC Summary

Test Conditions - Test conditions (pH, D.O., temperature, etc.) were within acceptable limits for these test organisms.

Negative Control - The biological responses at the Lab Control treatments were within acceptable limits.

Appendix A

Test Data and Summary of Statistical Analyses for the Evaluation of the Acute Toxicity of the Chemical Product "XC-197" on Fathead Minnows –
Initial Range-Finding Test

CETIS Summary Report

Report Date:

17 May-11 16:48 (p 1 of 1)

Test Code:

42661 | 11-1461-2024

Acute Fish Su	rvival Test										Paci	fic EcoRisi
Batch ID: Start Date: Ending Date: Duration:	02-0237-4609 20 Apr-11 14:30 24 Apr-11 12:30 94h	Pr Sp	st Type: otocol: ecies: eurce:	Survival (96h) EPA-821-R-02- Pimephales pro Aquatox, AR	• •			Analyst: Diluent: Brine: Age:	Lab	etin Worrell coratory Wate Applicable	er	
Sample ID: Sample Date: Receive Date: Sample Age:	10-3207-7544 20 Apr-11 14:30 20 Apr-11 14:30 N/A (21 °C)	Ma So	ode: aterial: ource: ation:	Product Freshwater SYRGIS Pcher XC-197	n			Client: Project:	SYI 182	RGIS PCHE	M	
Comparison S	ummary											
Analysis ID 12-0166-2604	Endpoint 96h Survival Ra	te	NOEL 1	. <u>LOEL</u>	TOEL 3.162	PMSD 5.38%	TU		hod el Mai	ry-One Rank	Test	
Point Estimate	Summary						•					
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	TU	Me	thod			
04-8940-2504	96h Survival Ra	te	EC10 EC15 EC20 EC25 EC40 EC50	1.361 1.438 1.507 1.698	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A		Line	ear Re	egression (M	LE)	-
96h Survival R	late Summary			· · · · · · · · · · · · · · · · · · ·							<u></u>	
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	k Std	Err	Std Dev	CV%_	%Effect
	Lab Water Contr	4	1	1	1	1	1	0		0	0.0%	0.0%
0.01		4	1	1	1	1	1	0		0	0.0%	0.0%
0.1		4	0.975		0.9937	0.9	1	0.0		0.05	5 13%	2.5%
1		4	0.975		0.9937	0,9	1	0.0	25	0.05	5.13%	2.5%
10		4	0	0	0	0	0	0		0		100.0%
100		4	0	0	0	0	0	0		0		100.0%
1000		4	0	0	0	0	0	0		0		100.0%
96h Survival R												
	Control Type	Rep 1	Rep 2		Rep 4							
_	Lab Water Contr	-	1	1	1							
0.01		1	1	1	1							
0.1		1	0.9	1	1							
		4										
1		1	0.9	1	1							
		1 0 0	0. 9 0 0	1 0 0	0							

Analyst: 400 QA: 250

Report Date:

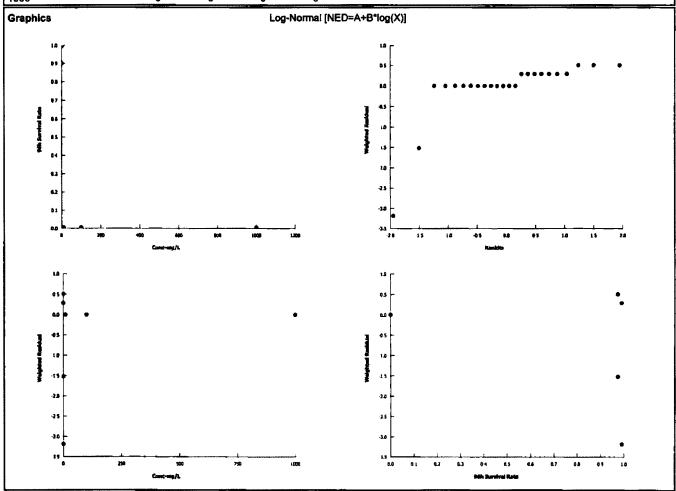
14 May-11 16:34 (p 1 of 2)

Test Code:

42661 | 11-1461-2024

Acute Fis	Jur	114G1 1A9f									rac	offic EcoRi
Analysis (Analyzed:		04-8940-2504 14 May-11 16:3			Survival Re ear Regress				S Version: ial Results:	CETISv1	.8.0	
inear Re	gresa	ion Options										
Model Fu	nctior	1		Threshold	Option	Threshold	Optimized	Pooled	Het Corr	Weighted	l	
og-Nom	al [NE	D=A+B*log(X)]		Control Th	reshold	1E-08	Yes	No	No	Yes		
Regressio	on Su	mmary										
ters L	L	AICc	BIC	Mu	Sigma	Adj R2	F Stat	Critical	P-Value	Decision	(a:5%)	
21 -	10,12	27.45	29.78	0.3534	0.1229	0.396	0.8298	3.16	0.4947	Non-Sign	ificant Lac	k of Fil
Point Esti	imate	3										
.evel n	ng/L	95% LCL	95% UC	L								
EC10 1	.269	N/A	N/A									
EC15 1	1.361	N/A	N/A									
EC20 1	1.438	N/A	N/A									
EC25 1	.507	N/A	N/A									
EC40 1	1.698	N/A	N/A									
EC50 1	.824	N/A	N/A									
Regressio	on Pai	rameters	.						*****			
Parameter Estimate Std Erro				r 95% LCL	95% UCL	t Stat	P-Value	Decision(a:5%)			
Threshold		0.008333	0.008299	3.479E-05		1.004	0.3267		ficant Paran	neter		
Slope		8,136	305	-296.9	313.2	0.02667	0.9790	Non-Significant Parameter				
ntercept		2.875	0.628	2.247	3.503	4.579	0.0002	Significant Parameter				
ANOVA T	able											
Source		Sum Squa	ares Me	an Square	DF	F Stat	P-Value	Decision(a:5%)			
Model		11.2516	11.	2516	1	17.08	0.0005	Significan				
Lack of Fil	l	1.680671	0.5	602236	3	0.8298	0.4947	Non-Signi	ficant			
Pure Error	г	12.15255	0.6	751415	18							
Residual		13.83322	0.6	587247	21							
Residual	Analy	sis										V
Attribute		Method		_	Test Stat	Critical	P-Value	Decision(a:5%)			
Goodness	-of-Fit	Pearson C	hi-Sq GOI	•	13.83	32.67	0.8767	Non-Signi	ficant Heter	ogenity		
		Likelihood	Ratio GOI	F	7.246	32.67	0.9976	Non-Signi	ficant Heter	ogenity		
Variances		Mod Lever	ne Equality	of Variance	0.8261	2.773	0.5475	Equal Var	iances			
Distributio	n	Shapiro-W		•	0.5205	0.9169	<0.0001	Non-norm	al Distributio	n		
		Anderson-	Darling A2	Normality	4.897	2.492	<0.0001	Non-norm	al Distribution	on		
96h Survi	val Ra	te Summary				Calcu	lated Variate	e(A/B)				
		introl Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
0	La	b Water Contro		1	1	1	0	0	0.0%	0.0%	40	40
0.01			4	1	1	1	0	0	0.0%	0.0%	40	40
0.1			4	0.975	0.9	1	0.025	0.05	5.13%	2.5%	39	40
1			4	0.975	0.9	1	0.025	0.05	5.13%	2.5%	39	40
10			4	0	0	0	0	0		100.0%	0	40
100			4	0	0	0	0	0		100.0%	0	40
1000			4	0	0	0	0	0		100.0%	0	40

Analyst: W QA: 25


Report Date: Test Code: 14 May-11 16:34 (p 2 of 2)

de:

42661 | 11-1461-2024

Acute Fish Su	urvivai Test				-	Pacific EcoRisk
Analysis ID:	04-8940-2504	Endpoint:	96h Survival Rate	CETIS Version:	CETISv1.8.0	
Analyzed:	14 May-11 16:33	Analysis:	Linear Regression (MLE)	Official Results:	Yes	

96h Survival						
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Lab Water Control	1	1	1	1	
0.01		1	1	1	1	
0.1		1	0.9	1	1	
1		1	0.9	1	1	
10		0	0	0	0	
100		0	0	0	0	
1000		0	0	0	0	

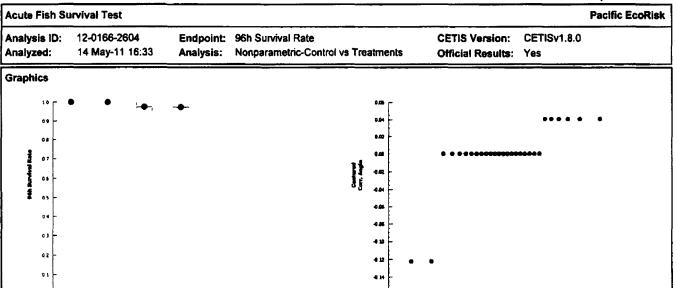
Analyst: QA: X

Report Date:

14 May-11 16:34 (p 1 of 2)

Test Code:

42661 | 11-1461-2024


											1-1-01-202
Acute Fish Sun	vival Test									Pacif	ic EcoRis
Analysis ID:	12-0166-2604	Er	ndpoint: 96h	Survival Ra	ite		CET	S Version:	CETISv1.	B.O	
Analyzed:	14 May-11 16:3	3 Ar	nalysis: No	nparametric-	Control vs T	reatments	Offic	ial Results	: Yes		
Data Transform	1	Zeta	Alt Hyp	MC Trials		NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correct	ted)	0	C > T	Not Run		1	10	3.162		5.38%	
Steel Many-One	Rank Test										
Control	vs Conc-mg	/L	Test Stat	Critical	DF	Ties	P-Value	Decision	(a:5%)		
Lab Water Cont	rol 0.01		18	10	6	1	0.8571	Non-Signi	ficant Effect		
	0.1		16	10	6	1	0.6450	Non-Signi	ficant Effect		
	1		16	10	6	1	0.6450	Non-Signi	ficant Effect		
	10*		10	10	6	0	0.0480	Significan	t Effect		
	100*		10	10	6	0	0.0480	Significan	t Effect		
	1000*		10	10	6	0	0.0480	Significan	t Effect		
ANOVA Table									1440		
Source	Sum Squares Mea			ıare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	10.42919		1.738198		6	916.2	<0.0001	Significan	t Effect		
Error	0.039839		0.0018970	95	21						
Total	10.46903		1.740095		27						
Distributional 1	lests					•					
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Mod Leve	ne Equal	ity of Variance	0.8333	3.812	0.5577	Equal Val	riances			
Distribution	Shapiro-V	Vilk W No	mality	0.5824	0.8975	<0.0001	Non-norm	al Distributi	on		
96h Survival Ra	ate Summary										
Conc-mg/L C	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0 L	ab Water Conti	r 4	1	1	1	1	1	0	0	0.0%	0.0%
0.01		4	1	1	1	1	1	0	0	0.0%	0.0%
0.1		4	0.975	0.956	0.994	0.9	1	0.025	0.05	5.13%	2.5%
1		4	0.975	0.956	0.994	0.9	1	0.025	0.05	5.13%	2.5%
10		4	0	0	0	0	0	0	0	0.10.0	100.0%
100		4	0	0	0	0	0	0	0		100.0%
1000		4	0	0	0	0	0	Ö	0		100.0%
Angular (Corre	cted) Transfor	med Sun	nmary								
	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
	ab Water Cont		1,412	1,412	1.412	1,412	1,412	0	0	0.0%	0.0%
0.01		4	1.412	1.412	1.412	1.412	1.412	0	0	0.0%	0.0%
0.01		4	1.371	1.412	1.402	1.249	1.412	0.04074	0.08149	5.94%	2.89%
0. i 1				1.34	1.402			0.04074		5.94% 5.94%	
•		4	1.371			1.249	1.412		0.08149		2.89%
10		4	0.1588	0.1588	0.1588	0.1588	0.1588	0	0	0.0%	88.76%
100		4	0.1588	0.1588	0.1588	0.1588	0.1588	0	0	0.0%	88.76%
1000	4		0.1588	0.1588	0.1588	0.1588	0.1588	0	0	0.0%	88.76%

Analystifle QA: 25

Report Date: **Test Code:**

14 May-11 16:34 (p 2 of 2)

42661 | 11-1461-2024

Analyst: 2 QA: X

96 Hour Acute Fathead Minnow Toxicity Test

Client _		SYRGIS		Organism Log #	5733	.42	5 days	
Test Material		XC-197		Organism Supplier:	<u>A</u>	Matex		
fest ID#	42661	Project #1	8260	Control/Diluent.		EPAMI	t	
Test Date:	4/20/11	Randomization	. 4. 7. 1	Control Water Batch:		138	6	

Treatment (mg/L)	Temp (C)		H	D.O (mg/L)	Conductiv	ity (µS/em)		#Live O	rganisms		SIGN-OFF
		new	old	new	old	new	old	Rep A	Rep B	Rep C	Rep D	feet bedeleen been as a
Control	5320,	8.01		7.4		349		10	10	10	10	Lost Solution Prep
0.01	ZU. 1	8-00		7.3		350		10	10	10	10	ungle (1) 26.3/3
0.10	20 j	8-02		7.3		349		10	10	10	10	108 11 YK
1.0	20.1	8.02		7.5		320		10	10	10	10	Instrument line 4/20/11
10	ZU.1	8.02		75		351		10	10	10	10	1430
100	20.1	7.93		74		367		10	10	10	10	Implation Signoff
1000	70.1	696		6-1		532		10	10	10	10	
Meter ID	53A	14 14		1200 5		Ecoy						
C'ontrol	20.0		8-48		8.0		366	10	10	10	10	Countible 4/21/11
0.01	20.0		3.30		77		362	10	10	10	10	Hant Fonc 0 915
0.10	200		8.21		83		362	10	10	10	10	Count Signed
1.0	20.0		8.25		8.0		362	10	10	10	10	IN WY
10	20.0		8-23		8.3		3784		10	10	10	
100	200		820		2.0		378	0	O	0	O	
1000	20.0		7.73		7-8		533	0	0	0	0	
Meter ID	53A		Ph 14		409		1204	_		_		
Control	20.5	8.09	8.13	8.1	7.3	360	384	10	10	10	10	lest Solution Prep
0.01	205	8.2	8.04	7.8	6.7	359	391	10	10	10	10	Sample (1) 26 3/3
0,10	20.5	8.20	10-8	8.1	6.8	357	376	10	10	10	10	"" " JLA
1.0	705		7.96	7.9	7.0	356	372	10	9	10	10	Renewal Date 4/22/#
10	205		7.98	8.2	6.7	357	370	4	9	9	10	Renewal June 10 55
100	ZUT		-	_		=				_	-	Renewal Signatur
1000	20.5		_	-	_					-		ON WO YOU
Meter ID	53A	PH03	Phill	RD06	2004	Eco6	Eco4					
Control	205				87.2	CONTRACTOR OF THE PARTY OF THE	354	10	- 10	10	10	Comme 11.10: 4.23. \
10,0			7.92				355	/0	10	10	10	Count time 1135
0.10	20.5				7.0		359		10	10	10	Logal Seguell
1.0	20.5		7.85					_/0_	9	<u> </u>	10	OMWO
10	20.5		7.86		7.2		326	10	0	10		, , , o
100	20.5		7.83		7.2		عدر ا	0	3	0	0	
	_										 -	
1000										- -		
Meter ID	53A		Right		ROGE		£006	_			 	Terminalism Date
Control	20.4		7.12		8.2		368	10	10	10	10	Termination Date 4/24/1
0.01	20.4		7.87		7.9		361	10	10	10	Πō	
0.10	20.4		7.88		8.0		359	10	9	10	10	Icramination Signed m G
1.0	20.4		7.88		8.1		3 ø∂	10	9	10	10	**************************************
10	<u> </u>				~_		J	_=				
100	_								-		_	
1000								_				
Meier ID	53A		PH03		RD05		ECOY	-	-			

Appendix B

Test Data and Summary of Statistical Analyses for the Evaluation of the Acute Toxicity of the Chemical Product "XC-197" on Fathead Minnows – Follow-Up Definitive Test

CETIS Summary Report

Report Date:

17 May-11 16:44 (p 1 of 1)

Test Code:

42730 | 03-1230-9790

Acute Fish Su	rvival Test										Pacifi	c EcoRisi
Batch ID: Start Date: Ending Date: Duration:	04-6863-3167 28 Apr-11 15:15 02 May-11 16:40 4d 1h	Protocol	l: EP/ : Pim	vival (96h) A-821-R-02- ephales pro latox, AR	•			Analyst: Diluent: Brine: Age:	Labo	in Worrell pratory Wate Applicable	er	
Sample ID: Sample Date: Receive Date: Sample Age:			: Fre	duct shwater RGIS Pchen 197	1			Client: Project:	SYR 1826	GIS PCHE	M	
Comparison S	Summary	- State										
Analysis ID 00-8399-7850	Endpoint 96h Survival Rat		EL	LOEL 10	TOEL 7.071	PMSD 11.4%	TU	Met Stee		y-One Rank	Test	
Point Estimat	e Summary											-
Analysis ID	Endpoint	Le	vel	mg/L	95% LCL	95% UCL	TU	Met	hod			
04-5331-4814	96h Survival Ra	EC	:10 :15 :20	4.964 5.081 5.175	N/A N/A N/A	N/A N/A N/A		Line	Linear Regression (MLE)			
			25	5.175 5.257	N/A	N/A						
			40	5.47	N/A	N/A						
1		EC	:50	5.602	N/A	N/A						
96h Survival I	Rate Summary					V	***			**************************************		
Conc-mg/L	Control Type	Count Me	an	95% LCL	95% UCL	Min	Max	c Std	Err	Std Dev	CV%	%Effect
0	Lab Water Contr		75	0.9563	0.9937	0.9	1	0.02		0.05	5.13%	0.0%
0.5		4 1		1	1	1	1	0		0	0.0%	-2.56%
1		4 1		1	1	1	1	0		0	0.0%	-2.56%
2.5		4 0.9	75	0.9563	0.9937	0.9	1	0.02	25	0.05	5.13%	0.0%
5		4 0.8	375	0.8043	0.9457	0.6	1	0.09	465	0.1893	21.63%	10.26%
10		4 0		0	0	0	0	0		0		100.0%
20		4 0		0	0	0	0	0		0		100.0%
96h Survival I	Rate Detail											
Conc-mg/L	Control Type	Rep 1 Re	p 2	Rep 3	Rep 4							
0	Lab Water Contr	1 1		1	0.9							
0.5		1 1		1	1							
1		1 1		1	1							
2.5		0.9 1		1	1							
5		1 1		0.6	0.9							
, o												
10		0 0		0	0							

Analyst QA: 85

EC25 5.257

Intercept

N/A

768.9

-782.1

755.6

-13.27

Report Date:

Non-Significant Parameter

14 May-11 16:43 (p 1 of 2)

Test Code: 42730 j 03-1230-9790

Acute f	Fish Su	rvival Test								Pacific EcoRisi
Analysi Analyz		04-5331-4814 14 May-11 16:4		•	h Survival R ear Regres				IS Version: cial Results:	CETISv1.8.0 Yes
Linear	Regres	sion Options								
Model	Functio	n		Threshol	d Option	Threshold	Optimized	Pooled	Het Corr	Weighted
Log-No	rmal (N	ED=A+B*log(X)]		Control T	hreshold	0.025	Yes	No	No	Yes
Regres	sion S	ummary				· · · · · · · · · · · · · · · · · · ·				
iters	LL	AICc	BIC	Mu	Sigma	Adj R2	F Stat	Critical	P-Value	Decision(a:5%)
19	-20.9	5 49.1	51,43	-0.5435	0.04097	0.4111	0.573	3.16	0.6400	Non-Significant Lack of Fit
Point E	stimate	98		-						
Level	mg/L	95% LCL	95% UC	L						
EC10	4.964	N/A	N/A							
EC15	5.081	N/A	N/A							
EC20	5.175	N/A	N/A							

EC40	5.47	N/A	N/A						
EC50	5.602	N/A	N/A						
Regres	sion Para	meters							
Param	eter	Estimate	Std Error	95% LCL	95% UCL	t Stat	P-Value	Decision(a:5%)	
Thresh	oid	0.0125	0.008783	0.003717	0.02128	1.423	0.1694	Non-Significant Parameter	
Slope		24.41	1100	-1076	1124	0.02219	0.9825	Non-Significant Parameter	

ANOVA Table				•		
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Model	14.98285	14.98285	1	18.06	0.0004	Significant
Lack of Fil	1.518986	0.5063285	3	0.573	0.6400	Non-Significant
Pure Error	15.90452	0.8835844	18			
Residuai	17.4235	0.8296907	21			

-0.01725 0.9864

Residual Analysis	•				
Attribute	Method	Test Stat	Critical	P-Value	Decision(a:5%)
Goodness-of-Fit	Pearson Chi-Sq GOF	17.42	32.67	0.6851	Non-Significant Heterogenity
	Likelihood Ratio GOF	15.44	32.67	0.8005	Non-Significant Heterogenity
Variances	Mod Levene Equality of Variance	1.562	2.773	0.2209	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.6205	0.9169	<0.0001	Non-normal Distribution
	Anderson-Darling A2 Normality	4.277	2.492	<0.0001	Non-normal Distribution

96h Survival Rate Summary Calculated Variate(A/B)											
Conc-mg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
0	Lab Water Contro	4	0.975	0.9	1	0.025	0.05	5.13%	0.0%	39	40
0.5		4	1	1	1	0	0	0.0%	-2.56%	40	40
1		4	1	1	1	D	0	0.0%	-2.56%	40	40
2.5		4	0.975	0.9	1	0.025	0.05	5.13%	0.0%	39	40
5		4	0.875	0.6	1	0.09465	0.1893	21.63%	10.26%	35	40
10		4	0	0	0	0	0		100.0%	0	40
20		4	0	0	0	0	0		100.0%	0	40

Analyst: W QA: X

Report Date:

14 May-11 16:43 (p 2 of 2)

Test Code:

42730 | 03-1230-9790

Acute Fish S	Survival Test								Pacific EcoRi
Analysis ID: Analyzed:	04-5331-4814 14 May-11 16:4			96h Survival F Linear Regres			CETIS Version: Official Results:	CETISv1.8,0 Yes	
6h Survival	Rate Detail								
	Control Type	Rep 1	Rep 2	Rep 3	Rep 4		_		
)	Lab Water Control	1	1	1	0.9				
.5		1	1	1	1				
		1	1	1	1				
.5		0.9	1	1	1				
i		1	1	0.6	0.9				
10		0	0	0	0				
.0		0	0	0	0				
raphics				Log-No	ormal [NED=	A+B*log(X)]			
19 [7						13 F			
39									• •
	• •					10			
94	•					85			
27	-					- 1.0 E	• • • • • • •		
3	•								
25 es -						1 45			
§	_					1.0			
Į.						1.5			
0.3	-								
0.7	-					- 26-			
•1						35	•		
ا مو						ــــا مد			_1
•	3	IA Canc-org/L	15	20 7	•	-2.0	15 10 45 00 Residen	05 14	15 20
15	٢					1.5			
18	-					1.0			•
as	•• •					05			. •
3 04		•		•	•	3 **			
3	_					45			
1						1			
₹ 18	-					Ī 15			
15	-					1.5			
						1			
1.0						20			

Analysi QA: 18

Report Date: Test Code: 14 May-11 16:43 (p 1 of 2) 42730 | 03-1230-9790

							1001	Code:		42130 00	F 1230-313
Acute Fish Su	rvival Test									Pacif	ic EcoRisi
Analysis ID:	00-8399-7850	Fn	dpoint: 96h	Survival Ra	ite		CET	S Version:	CETISv1.	8.0	
Analyzed:	14 May-11 16:4:				Control vs T	reatments		ial Results:		•••	
-											
Data Transform		Zeta	Alt Hyp	MC Trials		NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	cted)	0	C>T	Not Run		5	10	7.071		11.4%	
Steel Many-Or	ne Rank Test										
Control	vs Conc-mg/	L	Test Stat	Critical	DF	Ties	P-Value	Decision(x:5%)		
Lab Water Con	trol 0.5		20	10	6	1	0.9616	Non-Signifi	icant Effect		
	1		20	10	6	1	0.9616	Non-Signifi	icant Effect		
	2.5		18	10	6	2	0.8571	Non-Signifi	icant Effect		
	5		15.5	10	6	2	0.5790	Non-Signif	icant Effect		
	10-		10	10	6	0	0.0480	Significant	Effect		
	20*		10	10	6	0	0.0480	Significant	Effect		
ANOVA Table						-					
Source	Sum Squa	res	Mean Squ	are	DF	F Stat	P-Value	Decision(a:5%)		
Between	8,343235		1.390539		6	130.2	<0.0001	Significant	Effect		
Error	0,2243611		0.0106838	6	21			_			
Total	8.567596		1.401223		27	-					
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Mod Leve	ne Equalit	y of Variance	2.402	3.812	0.0633	Equal Va	riances			
Distribution	Shapiro-W	/ilk W Nor	mality	0.6749	0.8975	<0.0001	Non-nom	nal Distributio	n		
96h Survival F	Rate Summary				<u> </u>						
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Water Contr	4	0.975	0.956	0.994	0.9	1	0.025	0.05	5.13%	0.0%
0.5		4	1	1	1	1	1	0	0	0.0%	-2.56%
1		4	1	1	1	1	1	0	0	0.0%	-2.56%
2.5		4	0.975	0.956	0.994	0.9	1	0.025	0.05	5.13%	0.0%
5		4	0.875	0.803	0.947	0.6	1	0.09465	0.1893	21.63%	10.26%
10		4	0.075	0.505	0.547	0.0	0	0.03-03	0.1033	21.0070	100.0%
20		4	0	0	0	0	0	0	0		100.0%
											100.078
• •	ected) Transform		•								
Conc-mg/L	Control Type	Count	Mean	95% LCL		Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Water Cont		1.371	1.34	1.402	1.249	1.412	0.04074	0.08149	5.94%	0.0%
0.5		4	1.412	1.412	1.412	1.412	1.412	0	0	0.0%	-2.97%
1		4	1.412	1.412	1.412	1.412	1.412	0	0	0.0%	-2.97%
2.5		4	1.371	1.34	1.402	1.249	1.412	0.04074	0.08149	5.94%	0.0%
5		4	1.24	1.145	1.334	0.8861	1.412	0.124	0.248	20.0%	9.59%
10		4	0.1588	0.1588	0.1588	0.1588	0.1588	0	0	0.0%	88.42%
								-			

0.0%

68.42%

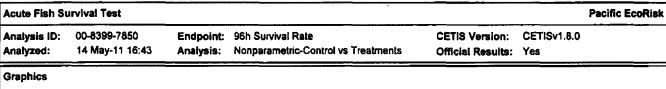
20

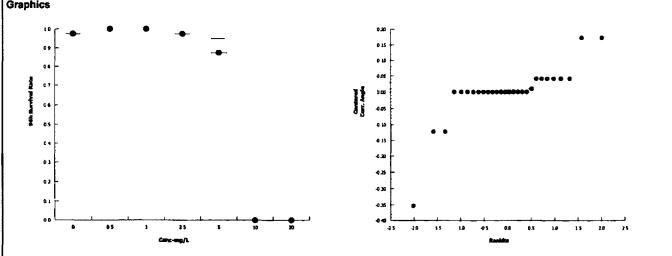
0.1588

0.1588

0.1588

0.1588


0


0.1588

0

Report Date: Test Code: 14 May-11 16:43 (p 2 of 2)

Test Code: 42730 | 03-1230-9790

96 Hour Acute Fathead Minnow Toxicity Test

	96 Hour Acute	Fathead Minnow Toxicity Test	5 DAG
Client _	SYRGIS	Organism Lug 4.5763	In: 4 Myseu
lesi Material.	XC 197	Organism Supplier: ACUTTOX	
Test ID#	42730 Project # 18260	Control Diluent:	EPAMH
Test Date.	1/20/11 Randomization. 4 • 7.1	Control Water Batch:	1355 <u> </u>
Feeding To	Time. 1200 Initials: MG	Feeding Title Time: 100	Initials Tur

			11	DO	(mg L)	Conduction	ity (µS cm)	# Live Organisms					
Treatment (mg l.)	Temp (C)	new uld		new old		new ald		Rep A Rep B		Rep C Rep D		SIGN-OFF	
('custres')	19.6	8.11		8.0		245		10	10	10	10	led Solution Prep	
0,5	19.6	8.08		78		346		iO	in	10	10	Sample 11) 2 6313	
1	19.6	8.05		7.4		347		10	10	10	70	ME ME	
2.5	19.6	8.05		7.0		347		10	10	10	10	Installed Pulc 4/28/11	
5	19.6	8 04		6.7		348		10	10	/0	10	Installed Time 615	
10	19.6	8.03		7.0		349		10	10	10	10	TOTALINO SORDINI	
20	19.6	8.01		7.0		352		10	10	10	10		
Meter ID	60,4	Ph03		RDC4		Ecot							
Control	19.4		8,11		7.6		365	10	10	10	10	Count 13th 129/11	
0.5	19.4		809		7.9		35	10	10	10	10	1030	
1	19.4		208		7.4		365	10	10	70	10	Virial Signal MG	
2.5	19.4		9.08		7.9		366	9	10	10	10	اللاس دد	
	19.4		7.08		7.3		366	10	10	10	10		
10	19.4		8.07		7.9		367	10	10	10	10		
20	19.4		8.10		7.6		369	3	2	2	0		
Meier ID	60A		6He3		1004		GUSH						
Control	19.4	8.16	7.76	3.8	7.3	361	366	10	10	10	9	lest Sadation Prop @	
0.5	19.4	8.12	7.8]	8.5	7.6	361	369	(0	10	(e	و	Sumple 11 20313	
1	194	8.10	7.31	8.7	7.)	342	372	10	(0	(0	6	in No	
2.5	19.4	8.10	7.83	5. L.	7.2	nı	3C7	9	10	10	10	Reachailten 4/3c/11	
.5	19.4	8.09	7.79	8.6	6.6	362	368	10	(0	(0)	(0	Renewal lime 13/5	
10	19.4	8.07		8.6	7.5	363	370	10	10	10	9	Renewal Signali	
20	19.4	8.04	7.92	8.6	8	365	375	2	1	0			
Meter ID	Pn 294	የክ 2	PH12	Rooy	2064	Ecop	Erob	<u>~</u>		<u> </u>			
Control	19.5		7.99		7.9		373	10	10	10	9	Count Pate: 5/1/11	
0.5	19.5		7.95		7.8		302	10	10	10	10	Count Time 1030	
1	19.5		7.93		7-8		359	TÓ_	10	10	10	ME ME	
2.5	19.5		7.92		7.7		357	U	10	10	12	mwo SH	
5	195		7.92		7.7		357	10	10	9	10		
10	19.5		7.88		٧.٧		303	5	5	_5_	3		
20	19.5		7.44		7.8		302	_0_	0		_		
Meter ID	GOA		PH 12		2000		ECOH	-	-	<u>-</u>		Terrounation Date 4	
Control	19.2		7.76	2002000	6.2		367	İĎ	ID-	10	9	Termination Date 5/2/11 Termination Time 1640	
0.5	19.2		7.78		6.4		367	10	10	10	iõ		
1	19.2		7.74		6.6		369	10	10	10	10		
2.5 5	19.2		7.76		6.7		369	9	10	10	Q		
10	19.2		7.14		618		368	10	ĪD	4	9		
	19.2		7.80		6.8_		371	9	9	2	0		
20 MF Meter ID			Dt		0.5=/1		Com	<u> </u>		+ = -			
MANUAL III/	60A		Ph12		2004		Ecoy						

SYRGIS PCHEM P O Box 977 3985 US HWY 287 N Latexo, TX 75849

CERTIFIED MAIL.

7002 2030 0004 3445 3924